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results therefrom. Note that outlier procedures must
be considered apart from the investigation and treat-
ment of an out-of-specification (OOS) result (reporta-
ble value). Decisions to remove an outlier from data
analysis should not be made on the basis of how the
reportable value will be affected (e.g., a potential
OOS result). Removing data as outliers should be
rare. If many values from a run are removed as outli-
ers, that run should be considered suspect.
Step 4: Refit the model with the transformation and/or
weighting previously imposed (Step 2) without the observa-
tions identified as outliers (Step 3) and re-assess the appro-
priateness of the model.
Step 5: If necessary or desired, choose a scheme for identi-
fying subsets of data to use for potency estimation, whether
the model is linear or nonlinear (see section 4.5 Linearity of
Concentration—-Response Data).
Step 6: Calculate a relative potency estimate by analyzing
the Test and Standard data together using a model con-
strained to have parallel lines or curves, or equal intercepts.

5.4 Bioassay Validation

The bioassay validation is a protocol-driven study that
demonstrates that the procedure is fit for use. A stage-wise
approach to validation may be considered, as in a “suitable
for intended use” validation to support release of clinical
trial material, and a final, comprehensive validation prior to
BLA or MAA filing. Preliminary system and sample suitability
controls should be established and clearly described in the
assay procedure; these may be finalized based on additional
experience gained in the validation exercise. Chapter (1033)
provides validation comprehensive discussion of bioassay
validation.

5.5 Bioassay Maintenance

The development and validation of a bioassay, though
discrete operations, lead to ongoing activities. Assay im-
provements may be implemented as technologies change,
as the laboratory becomes more skilled with the procedure,
and as changes to bioassay methodology require re-evalua-
tion of bioassay performance. Some of these changes may
be responses to unexpected performance during routine
processing. Corrective action should be monitored using
routine control procedures. Substantial changes may require
a study verifying that the bioassay remains fit for use. An
equivalence testing approach can be used to show that the
change has resulted in acceptable performance. A statisti-
cally-oriented study can be performed to demonstrate that
the change does not compromise the previously acceptable
performance characteristics of the assay.

Assay Transfer—Assay transfer assumes both a known in-
tended use of the bioassay in the recipient lab and the asso-
ciated required capability for the assay system. These implic-
itly, though perhaps not precisely, demarcate the limits on
the amount of bias and loss of precision allowed between
labs. Using two laboratories interchangeably to support one
product will require considering the variation between labs
in addition to intermediate precision for sample size require-
ments to determine process capability. For a discussion and
example pertaining to the interrelationship of bias, process
capability, and validation, see A Bioassay Validation Example
in (1033{.

Improving or Updating a Bioassay System—A new version
of a bioassay may improve the quality of bias, precision,
range, robustness, specificity, lower the operating costs or
offer other compelling advantages. When improving or up-
dating a bioassay system a bridging study may be used to
compare the performance of the new to the established as-
say. A wide variety of samples (e.g., lot release, stability,
stressed, critical isoforms) can be used for demonstrating
equivalence of estimated potencies. Even though the assay
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systems may be quite different (e.g., an animal bioassay ver-
sus a cell-based bioassay), if the assays use the same Stan-
dard and mechanism of action, comparable potencies may
reasonably be expected. If the new assay uses a different
Standard, the minimum requirement for an acceptable com-
parison is a unit slope of the log linear relationship between
the estimated potencies. An important implication of this
recommendation is that poor precision or biased assays
used early can have lasting impact on the replication re-
quirements, even if the assay is later replaced by an im-
proved assay.mis (usess)

Add the following:

%(1033) BIOLOGICAL ASSAY
VALIDATION

1. INTRODUCTION

Biological assays (also called bioassays) are an integral part
of the quality assessment required for the manufacturing
and marketing of many biological and some non-biological
drug products. Bioassays commonly used for drug potency
estimation can be distinguished from chemical tests by their
reliance on a biological substrate (e.g., animals, living cells,
or functional complexes of target receptors). Because of
multiple operational and biological factors arising from this
reliance on biology, they typically exhibit a greater variabil-
ity than do chemically-based tests.

Bioassays are one of several physicochemical and biologic
tests with procedures and acceptance criteria that contro
critical quality attributes of a biological drug product. As
described in the ICH Guideline entitled Specifications: Test
Procedures And Acceptance Criteria For Biotechnological/Bi-
ological Products (Q6B), section 2.1.2, bioassay techniques
may measure an organism’s biological response to the prod-
uct; a biochemical or physiological response at the cellular
level; enzymatic reaction rates or biological responses in-
duced by immunolo%ical interactions; or ligand- and recep-
tor-binding. As new biological drug products and new tech-
nologies emerge, the scope of bioassay approaches is likely
to expand. Therefore, general chapter Biological Assay Vali-
dation {(1033) emphasizes validation approaches that provide
flexibility to adopt new bioassay methods, new biological
drug products, or both in conjunction for the assessment of
drug potency.

Good manufacturing practice requires that test methods
used for assessing compliance of pharmaceutical products
with quality requirements should meet appropriate stan-
dards for accuracy and reliability. Assay validation is the pro-
cess of demonstrating and documenting that the perfor-
mance characteristics of the procedure and its underlying
method meet the requirements for the intended application
and that the assay is thereby suitable for its intended use.
USP general chapter Validation of Compendial Procedures
(1225) and ICH Q2(R1) describe the assay performance
characteristics (parameters) that should be evaluated for
procedures supporting small-molecule pharmaceuticals. Al-
though evaluation of these validation parameters is straight-
forward for many types of analytical procedures for well-
characterized, chemically-based drug products, their inter-
pretation and applicability for some types of bioassays has
not been clearly delineated. This chapter addresses bioassay
validation from the point of view of the measurement of
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activity rather than mass or other physicochemical measure-
ments, with the purpose of aligning bioassay performance
characteristics with uses of bioassays in practice.

Assessment of bioassay performance is a continuous pro-
cess, but bioassay validation should be performed when de-
velopment has been completed. Bioassay validation is
guided by a validation protocol describing the goals and
design of the validation study. General chapter (1033) pro-
vides validation goals pertaining to relative potency bioas-
says. Relative potency bioassays are based on a comparison
of bioassay responses for a Test sample to those of a desig-
nated Standard that provides a quantitative measure of the
Test bioactivity relative to that of the Standard.

Validation parameters discussed include relative accuracy,
specificity, intermediate precision, and range. Laboratories may
use dilutional linearity to verify the relative accuracy and
range of the method. Although robustness is not a require-
ment for validation, general chapter (1033) recommends
that a bioassay’s robustness be assessed prior to validation.
In addition, (1033) describes approaches for validation de-
sign (sample selection and replication strategy), validation
acceptance criteria, data analysis and interpretation, and fi-
nally bioassay performance monitoring through quality con-
trol. Documentation of bioassay validation results is also dis-
cussed, with reference to pre-validation experiments
performed to optimize bioassay performance. In the remain-
der of general chapter (1033) the term “bioassay” should be
interpreted as meaning “relative potency bioassay”.

2. FUNDAMENTALS OF BIOASSAY
VALIDATION

The goal of bioassay validation is to confirm that the op-
erating characteristics of the procedure are such that the
procedure is suitable for its intended use. The issues in-
volved in developing a bioassay are described in greater de-
tail in general chapter (1032) and are assumed resolved by
the time the bioassay is in validation. Included in those deci-
sions will be identification of what constitutes an assay and
a run for the bioassay. Multiple dilutions (concentrations) of
the Standard and one or more Test samples constitute a
replicate set (also known as a minimal set), which contain a
test substrate (e.g., group of animals or vessel of cells) at
each dilution for each sample [Test(s) and Standard]. A run
is defined as work performed durin% a period when the ac-
curacy (trueness) and precision in the assay system can rea-
sonably be expected to be stable. In practice, a run fre-
quently consists of the work performed by a single analyst
in one lab, with one set of equipment, in a short period of
time (typically a day). An assay is the body of data used to
assess similarity and estimate potency relative to a Standard
for each Test sample in the assay. A run may contain multi-
ple assays, a single assay, or part of an assay. Multiple assays
may be combined to yield a reportable value for a sample.
The reportable value is the value that is compared to a
product specification.

In assa%/s that involve groups at each dilution (e.g., 6 sam-
ples, each at 10 dilutions, in the non-edge wells of each of
several 96-well cell culture plates) the groups (plates) consti-
tute statistical blocks that should be elements in the assay
and validation analyses (blocks are discussed in (1032)).
Within-block replicates for Test samples are rarely cost-effec-
tive. Blocks will not be further discussed in this chapter;
more detailed discussion is found in (1032).

The amount of activity (potency) of the Standard is ini-
tially assigned a value of 1.0 or 100%, and the potency of
the Test sample is calculated by comparing the concentra-
tion-response curves for the Test and Standard pair. This
results in a unitless measure, which is the relative potency of
the Test sample in reference to the potency of the Standard.
In some cases the Standard is assigned a value according to
another property such as protein concentration. In that case
the potency of the Test sample is the relative potency times
the assigned value of the Standard. An assumption of paral-
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lel-line or parallel-curve (e.g., four-parameter logistic) bioas-
says is that the dose-response curves that are generated us-
ing a Standard and a Test sample have similar (parallel)
curve shape distinguished only by a horizontal shift in the
log dose. For slope-ratio bioassays, curves generated for
Standard and Test samples should be linear, pass through a
common intercept, and differ only by their slopes. Informa-
tion about how to assess parallelism is provided in general
chapters (1032) and (1034).

In order to establish the relative accuracy and range of the
bioassay, validation Test samples may be constructed using
a dilution series of the Standard to assess dilutional linearit:
(linearity of the relationship between known and measure
relative potency). In addition, the validation study should
yield a representative estimate of the variability of the rela-
tive potenlt_?/ determination. Although robustness studies are
usually performed during bioassay development, key factors
in these studies such as incubation time and temperature
and, for cell-based bioassays, cell passage number and cell
number may be included in the validation, particularly if
they interact with another factor that is introduced during
the validation (e.g., a temperature sensitive reagent that
varies in its sensitivity from lot-to-lot). Because of potential
influences on the bioassay from inter-run factors such as
multiple analysts, instruments, or reagent sources, the de-
sifgn of the bioassay validation should include consideration
of these factors. The variability of potency from these com-
bined elements defines the intermediate precision (IP) of the
bioassay. An aEpropriate study of the variability of the po-
tency values obtained, including the impact of intra-assay
and inter-run factors, can help the laboratory confirm an
adequate testing strategy and forecast the inherent variabil-
ity of the reportable value (which may be the average of
multiple potency determinations). Variability estimates can
also be utilized to establish the sizes of differences (fold dif-
ference) that can be distinguished between samples tested
in the bioassay. (See section 3.4 Use of Validation Results for
Bioassay Characterization.)

Demonstrating specificity (also known as selectivity) re-
quires evidence of lack of influence from matrix components
such as manufacturing process components or degradation
products so that measurements quantify the target molecule
only. Other analytical methods may complement a bioassay
in measuring or identifying other components in a sample.

2.1 Bioassay Validation Protocol

A bioassay validation protocol should include the number
and types of samples that will be studied in the validation;
the study design, including inter-run and intra-run factors;
the replication strategy; the intended validation parameters
and justified target acceptance criteria for each parameter;
and a proposed data-analysis plan. Note that in regard to
satisfying acceptance criteria, failure to find a statistically sig-
nificant effect is not an appropriate basis for defining ac-
ceptable performance in a bioassay; conformance to accep-
tance criteria may be better evaluated using an equivalence
approach.

In addition, assay, run, and sam,ole acceptance criteria
such as system suitability and similarity should be specified
before performing the validation. Depending on the extent
of development of the bioassay, these may be proposed as
tentative and can be updated with data from the validation.
Assay, run, or sample failures may be reassessed according
to criteria which have been defined in the validation proto-
col and, with sound justification, included in the overall vali-
dation assessment. Additional validation trials may be re-
quired in order to support changes to the method.

The bioassay validation protocol should include target ac-
ceptance criteria for the proposed validation parameters.
Steps to be taken upon failure to meet a target acceptance
criterion should be specified in the validation protocol, and
may result in a limit on the range of potencies that can be
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measured in the bioassay or a modification to the replica-
tion strategy in the bioassay procedure.

2.2 Documentation of Bioassay Validation
Results

Bioassay validation results should be documented in a
bioassay validation report. The validation report should sup-
port the conclusion that the method is fit for use or should
indicate corrective action (such as an increase in the replica-
tion strategy) that will be undertaken to generate sufficiently
reliable results to achieve fitness for use. The report could
include the raw data and intermediate results (e.g., variance
component estimates should be ﬁrovided in addition to
overall intermediate precision) which would facilitate repro-
duction of the bioassay validation analysis by an indepen-
dent reviewer. Estimates of validation parameters should be
reported at each level and overall as appropriate. Deviations
from the validation protocol should be documented with
justification. The conclusions from the study should be
clearly described with references to follow-up action as nec-
essary. Follow-up action can include amendment of system
or sample suitability criteria or modification of the bioassay
replication strategy. Reference to prevalidation experiments
may be included as part of the validation study report.
Prevalidation experiments may include robustness experi-
ments, where bioassay parameters have been identified and
ranges have been established for significant parameters, and
also may include qualification experiments, where the final
procedure has been performed to confirm satisfactory per-
formance in routine operation. Conclusions from prevalida-
tion and qualification experiments performed during devel-
opment contribute to the description of the operating
characteristics of the bioassay procedure.

2.3 Bioassay Validation Design

The biological assay validation should include samples
that are representative of materials that will be tested in the
bioassay and should effectively establish the performance
characteristics of the procedure. For relative accuracy, sample
relative potency levels that bracket the range of potencies
that may be tested in the bioassay should be used. Thus
samples that span a wide range of potencies might be stud-
ied for a drug or biological with a wide specification range
or for a product that is inherently unstable, but a narrower
range can be used for a more durable product. A minimum
of three potency levels is required, and five are recom-
mended for a reliable assessment. If the validation criteria
for relative accuracy and IP are satisfied, the potency levels
chosen will constitute the range of the bioassay. A limited
range will result from levels that fail to meet their target
acceptance criteria. Samples may also be generated for the
bioassay validation by stressing a sample to a level that
might be observed in routine practice (i.e., stability investi-

ations). Additionally, the influences of the sample matrix
?excipients, process constituents, or combination compo-
nents) can be studied strategically by intentionally varying
these together with the target analyte, using a multifactorial
approach. Often this will have been done during develop-
ment, prior to generating release and stability data.

The bioassay validation design should consider all facets
of the measurement process. Sources of bioassay measure-
ment variability include sample preparation, intra-run fac-
tors, and inter-run factors. Representative estimation of
bioassay variability necessitates consideration of these fac-
tors. Test sample and Standard preparation should be per-
formed independently during each validation run.

The replication strategy used in the validation should re-
flect knowledge of the factors that might influence the
measurement of potency. Intra-run variability may be af-
fected by bioassay operating factors that are usually set dur-
ing development (temperature, pH, incubation times, etc.);
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by the bioassay design (number of animals, number of dilu-
tions, replicates per dilution, dilution spacing, etc.); by the
assay acceptance and sample acceptance criteria; and by
the statistical analysis (where the primary endpoints are the
similarity assessment for each sample and potency estimates
for the reference samples). Operating restrictions and bioas-
say design (intra- and inter-run formulae that result in a
reportable value for a test material) are usually specified dur-
ing development and may become a part of the bioassay
operating(frocedure. IP is studied by independent runs of
the procedure, perhaps using an experimental design that
alters those factors that may have an impact on the perfor-
mance of the procedure. Experiments (including those that
implement formalized design of experiments [DOE]) with
nested or crossed design structure can reveal important
sources of variability in the procedure, as well as ensure a
representative estimate of long-term variability. During the
validation it is not necessary to employ the format required
to achieve the reportable value for a Test sample. A well-
designed validation experiment that combines both intra-
run and inter-run sources of variability provides estimates of
independent components of the bioassay variability. These
components can be used to verify or forecast the variability
of the bioassay format.

A thorough analysis of the validation data should include
graphical and statistical summaries of the validation parame-
ters’ results and their conformance to target acceptance cri-
teria. The analysis should follow the specifics of the data-
analysis plan outlined in the validation protocol. In most
cases, log relative potency should be analyzed in order to
satisfy the assumptions of the statistical methods (see sec-
tion 2.7 Statistical Considerations, Scale of Analysis,). Those
assumptions include normality of the distribution from which
the data were sampled and homogeneity of variability across
the range of results observed in the validation. These as-
sumptions can be explored using graphical techniques such
as box plots and probability plots. The assumption of nor-
mality can be investigated using statistical tests of normality
across a suitably sized collection of historical results. Alterna-
tive methods of analysis should be sought when the as-
sumptions can be challenged. Confidence intervals should be
calculated for the validation parameters, using methods de-
scribed here and in general chapter Analytical Data—Inter-
pretation and Treatment (1010).

2.4 Validation Strategies for Bioassay
Performance Characteristics

Parameters that should be verified in a bioassay are rela-
tive accuracy, specificity, IP (which incorporates rei)eatability),
and range. Other parameters discussed in general chapter
(1225) and ICH Q2(R1) such as detection limit and quanti-
tation limit have not been included because they are usually
not relevant to a bioassay that reports relative potency.
These may be relevant, however, to the validation of an
ancillary assay such as one used to score responders or
measure response in conjunction with an in vivo potency
assay. Likewise linearity is not part of bioassay validation,
except as it relates to relative accuracy (dilutional linearity).
There follow strategies for addressing bioassay validation
parameters.

Relative Accuracy—The relative accuracy of a relative po-
tency bioassay is the relationship between measured relative
Botency and known relative potency. Relative accuracy in
ioassay refers to a unit slope (slope = 1) between log
measured relative potency and log known relative potency.
The most common approach to demonstrating relative ac-
curacy for relative potency bioassays is by construction of
target potencies by dilution of the standard material or a
Test sample with known potency. This type of study is often
referred to as a dilutional linearity study. The results from a
dilutional linearity study should be assessed using the esti-
mated relative bias at individual levels and via a trend in
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relative bias across levels. The relative bias at individual levels
is calculated as follows:

Relative Bias = 100 « [Wq)%

Target Potency

The trend in bias is measured by the estimated slope of
log measured potency versus log target potency, which
should be held to a target acceptance criterion. If there is
no trend in relative bias across levels, the estimated relative
bias at each level can be held to a prespecified target accep-
tance criterion that has been defined in the validation proto-
col (see section 3 A Bioassay Validation Example).

Specificity—For products or intermediates associated with
complex matrices, specificity involves demonstrating lack of
interference from matrix components or product-related
components that can be expected to be present. This can
be assessed via parallel dilution of the Standard with and
without a spike addition of the potentially interfering com-
pound. If the curves are similar and the potency conforms
to expectations of a Standard-to-Standard comparison, the
bioassay is specific against the compound. For these assess-
ments both similarity and potency may be assessed using
appropriate equivalence tests.

Sc?eciﬁcity may also refer to the capacity of the bioassay
to distinguish between different but related biopharmaceuti-
cal molecules. An understanding should be sought of the
molecule and any related forms, and of opportunities for
related molecules to be introduced into the bioassay.

Intermediate Precision—Because of potential influences on
the bioassay by factors such as analysts, instruments, or rea-
gent lots, the design of the bioassay validation should in-
clude evaluation of these factors. The overall variability from
measurements taken under a variety of normal test condi-
tions within one laboratory defines the IP of the bioassay. IP
is the ICH and USP term for what is also commonly referred
to as inter-run variability. IP measures the influence of fac-
tors that will vary over time after the bioassay is imple-
mented. These influences are generally unavoidable and in-
clude factors like change in personnel (new analysts), receipt
of new reagent lots, etc.

When the validation has been planned using multifactor
DOE, the impact of each factor can first be explored graphi-
cally to establish important contributions to potengy varia-
bility. The identification of important factors should lead to
procedures that seek to control their effects, such as further
restrictions on intra-assay operating conditions or strategic
qualification procedures on inter-run factors such as ana-
lysts, instruments, and reagent lots.

Contributions of validation study factors to the overall IP
of the bioassay can be determined by performing a variance
component analysis on the validation results. Variance compo-
nent analysis is best carried out using a statistical software
package that is capable of performing a mixed-model analy-
sis with restricted maximum likelihood estimation (REML).

A variance component analysis yields variance component
estimates such as
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corresponding to intra-run and inter-run variation. These
can be used to estimate the IP of the bioassay, as well as
the variability of the reportable value for different bioassay
formats (format variability). IP expressed as percent geomet-
ric coefficient of variation (%GCV) is (]t;iven by the following
formula, in this case using the natural log of the relative
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potency in the analysis (see section 2.7 Statistical Considera-
tions, Scale of Analysis):

Intermediate Precision = 100 « (e“"'z"‘er+ o _ 1)%

The variability of the reportable value from testing performed
with n replicate sets in each of k runs (format variability) is
equal to:

Format Variability = 100 « (e“”'z"‘”/k * "'ﬁ"a/(”k)—1)%

This formula can be used to determine a testing format suit-
able for various uses of the bioassay (e.g., release testing
and stability evaluation).

Range—The range of the bioassay is defined as the true or
known potencies for which it has been demonstrated that
the analytical procedure has a suitable level of relative accu-
racy and IP. The range is normally derived from the dilu-
tional linearity study and minimally should cover the prod-
uct specification range for potency. For stability testing and
to minimize having to dilute or concentrate hyper- or hypo-
potent Test samples into the bioassay range, there is value
in validating the bioassay over a broader range.

2.5 Validation Target Acceptance Criteria

The validation target acceptance criteria should be chosen
to minimize the risks inherent in making decisions from
bioassay measurements and to be reasonable in terms of the
capability of the art. When there is an existing product
specification, acceptance criteria can be justified on the basis
of the risk that measurements may fall outside of the prod-
uct specification. Considerations from a process capability
(Cp) index can be used to inform bounds on the relative
bias (RB) and the IP of the bioassay. This chapter uses the
following Cpm index:

USL -LSL
Cpm=
6 : \/Ggroduct + RBZ + GlzRA

where USL and LSL are the upper and lower release specifi-
cation, RB is a bound on the degree of relative bias in the
bioassay, and

2
o-Product

and

2
ORA

are target product variance (i.e., lot-to-lot variability) and
release assay variance (with associated format) respectively.
(See section 3 A Bioassay Validation Example for an example
of determination of

O

and Cpm.) This formulation requires prior knowledge re-
garding target product variability, or the inclusion of a ran-
dom selection of lots to estimate this characteristic as part
of the validation. Given limited understanding of assay per-
formance, manufacturing history, and final specifications
during development, this approach may be used simply as a
guide for defining validation acceptance criteria.

The choice of a bound on Cpm is a business decision. The
proportion of lots that are predicted to be outside their
specification limits is a function of Cpm. Some laboratories
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require process capability corresponding to Cpm greater
than or equal to 1.3. This corresponds to approximately a 1
in 10,000 chance that a lot with potency at the center of
Ithe specification range will be outside the specification
imits.

When specifications have yet to be established for a prod-
uct, a restriction on relative bias or IP can be formulated on
the basis of the capability of the art of the bioassay method-
ology. For example, although chemical assays and immuno-
assays are often capable of achieving near single digit per-
cent coefficient of variation (%CV, or percent relative
standard deviation, %RSD), a more liberal restriction might
be placed on bioassays, such as animal potency bioassays,
that operate with much larger variability (measured as
%GCV which can be compared to %CV; see Appendix). In
this case the validation goal might be to characterize the
method, using the validation results to establish an assay
format that is predicted to yield reliable product measure-
ments. A sound justification for target acceptance criteria or
use of characterization should be included in the validation
protocol.

2.6 Assay Maintenance

Once a bioassay has been validated it can be imple-
mented. However, it is important to monitor its behavior
over time. This is most easily accomplished by maintaining
statistical process control (SPC) charts for suitable parameters
of the Standard response curve and potency of assay QC
samples. The purpose of these charts is to identify at an
early stage any shift or drift in the bioassay. If a trend is
observed in any SPC chart, the reason for the trend should
be identified. If the resolution requires a modification to the
bioassay or if a serious modification of the bioassay has oc-
curred for other reasons (for example, a major technology
change), the modified bioassay should be revalidated or
linked to the original bioassay by an adequately designed
bridging study with acceptance criteria that use equivalence
testing.

2.7 Statistical Considerations

Several statistical considerations are associated with de-
signing a bioassay validation and analyzing the data. These
relate to the properties of bioassay measurements as well as
the statistical tools that can be used to summarize and inter-
pret bioassay validation results.

Scale of Analysis—The scale of analysis of bioassay valida-
tion, where data are the relative potencies of samples in the
validation study, must be considered in order to obtain reli-
able conclusions from the study. This chapter assumes that
appropriate methods are already in place to reduce the raw
bioassay response data to relative potency (as described in
general chapter (1034)). Relative potency measurements are
typically nearly log normally distributed. Log normally distrib-
uted measurements are skewed and are characterized by
heterogeneity of variability, where the standard deviation is
proFortionaI to the level of response. The statistical methods
outlined in this chapter require that the data be symmetric,
approximating a normal distribution, but some of the proce-
dures require homogeneity of variability in measurements
across the potency range. Typically, analysis of potency after
log transformation generates data that more closely fulfill
both of these requirements. The base of the log transforma-
tion does not matter as long as a consistent base is main-
tained throughout the analysis. Thus, for example, if the
natural log (log to the base e) is used to transform relative
potenc% measurements, summary results are converted back
to the bioassay scale utilizing base e.

The distribution of potency measurements should be as-
sessed as part of bioassay development (as described in
(1032)). It it is determined that potency measurements are
normally distributed, the validation can be carried out using
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methods described in the general chapter Validation of Com-
pendial Procedures (1225).

As a consequence of the usual (for parallel-line assays) log
transformation of relative potency measurements, there are
advantages if the levels selected for the validation study are
evenly spaced on the log scale. An example with five levels
would be 0.50, 0.71, 1.00, 1.41, and 2.00. Intermediate
levels are obtained as the ﬂeometric mean of two adjacent
levels. Thus for example, the mid-level between 0.50 and
1.0 is derived as follows:

GM=,/0.50-1.0 =0.71

Likewise, summary measures of the validation are influ-
enced by the log normal scale. Predicted response should
be reported as the geometric mean of individual relative po-
tency measurements, and variability expressed as %GCV.
GCV is calculated as the anti-log of the standard deviation,
Sieg, Of log transformed relative potency measurements. The
formula is given by:

GCV = antilog(Sieg) — 1

Variability is expressed as GCV rather than RSD of the log
normal distribution in order to preserve continuity using the
log transformation (see additional discussion in the Appendix
to this chapter). Intervals that might be calculated from
GCV will be consistent with intervals calculated from mean
and standard deviation of log transformed data. Table 1
presents an example of the calculation of geometric mean
(GM) and associated RB, with %GCV for a series of relative
potency measurements performed on samples tested at the
1.00 level. The log base e is used in the illustration.

Table 1. lllustration of calculations of GM and %GCV

RP? In RP

1.1299 0.1221

0.9261 —0.0768

1.1299 0.1221

1.0143 0.0142

1.0027 0.0027

1.0316 0.0311

1.1321 0.1241

1.0499 0.0487

Average 0.0485 GM = 1.0497

RB = 4.97%
SD 0.0715 %GCV = 7.4%
1 Relative potency (RP) is the geometric mean of duplicate potencies
measured in the eight runs of the example given in Table 4.

Here the GM of the relative potency measurements is cal-
culated as the anti-log of the average log relative potency
measurements and then expressed as relative bias, the per-
cent deviation from the target potency:

GM = eAverage — @0.0485 = 1.0497

RB=100-( L t-1}*/(,:100-(1'0"'97-1]%:4.97%

Targe 1.00

and the percent geometric coefficient of variation (%GCV) is
calculated as:

%GCV = 100 - (e — 1)% = 100 - (e2715 — 1)% = 7.4%

Note that the %GCV calculated for this illustration is not
equal to the IP determined in the bioassay validation exam-
ple for the 1.00 level (8.5%); see Table 6. This illustration
utilizes the average of within-run replicates, while the IP in
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the validation example represents the variability of individual
replicates.

Reporting Validation Results Using Confidence
Intervals—Estimates of bioassay validation parameters
should be presented as a point estimate together with a con-
fidence interval. A point estimate is the numerical value ob-
tained for the parameter, such as the GM or %GCV. A confi-
dence interval’s most common interpretation is as the likely
range of the true value of the parameter. The previous ex-
ample determines a 90% confidence interval for average log
relative potency, Cli, as follows:

Cl, = Average +t, -SD/~/n
=0.0485+1.89-0.0715/+/8 = (0.0007, 0.0963)

For percent relative bias this is:

e0.0007 e0.0963
Clg =100~[ 100 —1]%,100~[ 100 —1J%=(0.07%,10.1%)

The statistical constant (1.89) is from a t-table, with degrees
of freedom (df) equal to the number of measurements mi-
nus one (df =8 — 1 = 7). A confidence interval for IP or
format variability can be formulated using methods for vari-
ance components; these methods are not covered in this
general chapter.

Assessing Conformance to Acceptance Criteria—Bioassay
validation results are compared to target acceptance criteria
in order to demonstrate tﬁat the bioassay is fit for use. The
process of establishing conformance of validation parame-
ters to validation acceptance criteria should not be confused
with establishing conformance of relative potency measure-
ments to product specifications. Product specifications
should inform the process of setting validation acceptance
criteria.

A common practice is to apply acceptance criteria to the
estimated validation parameter. This does not account, how-
ever, for the uncertainty in the estimated validation parame-
ter. A solution is to hold the confidence interval on the vali-
dation parameter to the acceptance criterion. This is a
standard statistical approach used to demonstrate conform-
ance to expectation and is called an equivalence test. It
should not be confused with the practice of performing a
significance test, such as a t-test, which seeks to establish a
difference from some target value (e.g., 0% relative bias). A
significance test associated with a P-value > 0.05 (equivalent
to a confidence interval that includes the target value for
the parameter) indicates that there is insufficient evidence to
conclude that the parameter is different from the target
value. This is not the same as concluding that the parameter
conforms to its target value. The study design may have too
few replicates, or the validation data may be too variable to
discover a meaningful difference from target. Additionally, a
significance test may detect a small deviation from target
that is of negligible importance. These scenarios are illus-
trated in Figure 1.
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Figure 1. Use of confidence intervals to establish that valida-
tion results conform to an acceptance criterion.

The solid horizontal line represents the target value (per-
haps 0% relative bias), and the dashed lines form the lower
(LAL) and uEper (UAL) acceptance limits. In scenario a, the
confidence bound includes the target, and thus one could
conclude there is insufficient evidence to conclude a differ-
ence from target (the significance test approach). However,
although the point estimate (the solid diamond) falls within
the acceptance range, the interval extends outside the
range, which signifies that the true relative bias may be
outside the acceptable range. In scenario b, the interval falls
within the acceptance range, signifying conformance to the
acceptance criterion. The interval in scenario c also falls
within the acceptance range but excludes the target. Thus,
for scenario ¢, although the difference of the point estimate
from the target is statistically significant, c is acceptable be-
cause the confidence interval falls within the target accep-
tance limits.

Using the 90% confidence interval calculated previously,
we can establish whether the bioassay has acceptable rela-
tive bias at the 1.00 level compared to a target acceptance
criterion of no greater than +12%, for example. Because the
90% confidence interval for percent relative bias (0.07%,
10.1%) falls within the interval (100*[(1/1.12) — 1]%, 100*
[(1.12/1) —1]%) = (- 11%, 12%), we conclude that there
is acceptable relative bias at the 1.00 level. Note that a 90%
confidence interval is used in an equivalence test rather than
a conventional 95% confidence interval. This is common
practice and is the same as the two one-sided tests (TOST)
approach used in pharmaceutical bioequivalence testing.

Risks in Decision-Making and Number of Validation
Runs—The application of statistical tests, including the as-
sessment of conformance of a validation parameter to its
acceptance criteria, involves risks. One risk is that the pa-
rameter does not meet its acceptance criterion although the
property associated with that parameter is satisfactory; an-
other, the converse, is that the parameter meets its accep-
tance criterion although the parameter is truly unsatisfac-
tory. A consideration related to these risks is sample size.

The two types of risk can be simultaneously controlled via
strategic design, including choice of the number of runs
that will be conducted in the validation. Specifically, the
minimum number of runs needed to establish conformance
to an acceptance criterion for relative bias is given by:

> (ta,df + tﬂIZ,df )2 6-'2;'

B2

where to,qr and tgq are distributional points from a Student’s
t-distribution; o and B are the one-sided type | and type I
errors, and represent the risks associated with drawing the
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wrong conclusion in the validation; df is the degrees of free-
dom associated with the study design (usually n — 1);

=7
0-IP

is a preliminary estimate of IP; and 8 is the acceptable
deviation (target acceptance criterion).

For example, if the acceptance criterion for relative bias is
£ 0.11 log (i.e., 8 = 0.11), the bioassay variability is

0, = 0.076 log

and o = = 0.05,

 (1.89+2.36)°0.0767

> 017 =8 runs

Note that this formulation of sample size assumes no intrin-
sic bias in the bioassay. A more conservative solution in-
cludes some nonzero bias in the determination of a sample
size. This results in a greater sample size to offset the impact
of the bias on the conclusions of the validation. In the cur-
rent example the sample size increases to 10 runs if one
assumes an intrinsic bias equal to 2%. Note also that this
calculation represents a recursive solution (because the de-
grees of freedom depend on n) requiring statistical software
or an algorithm that employs iterative methodology.

Note further that the selection of o and S should be justi-
fied on the basis of the corresponding risks of drawing the
wrong conclusion from the validation.

Modeling Validation Results Using Mixed Effects
Models—Many analyses associated with bioassay validation
must account for multiple design factors such as fixed effects
(e.g., potency level), as well as random effects (e.g., analyst,
run, and replicate). Statistical models composed of both
fixed and random effects are called mixed effects models and
usually require sophisticated statistical software for analysis.
The results of the analysis may be summarized in an analysis
of variance (ANOVA) table or a table of variance component
estimates. The primary goal of the analysis is to estimate
critical parameters rather than establish the significance of
an effect. The modeling output provides parameter esti-
mates together with their standard errors of estimates that
can be utilized to establish conformance of a validation pa-
rameter to its acceptance criterion. Thus the average relative
bias at each level is obtained as a portion of the analysis
together with its associated variability. These compose a
confidence interval that is compared to the acceptance crite-
rion as described above. If variances across levels can be
pooled, statistical modeling can also determine the overall
relative bias and IP by combining information across levels
performed in the validation. Similarly, mixed effects models
can be used to obtain variance components for validation
study factors and to combine results across validation study
samples and levels.

Statistical Design—Statistical designs, such as multifactor
DOE or nesting, can be used to organize assay and runs in a
bioassay validation. It is useful to incorporate factors that are
believed to influence the bioassay response and that vary
during long-term use of the procedure into these designs.
Using these methods of design, the sources of variability
may be characterized and a strategic test plan to manage
the variability of the bioassay may be developed.

Table 2 shows an example of a multifactor DOE that in-
corporates multiple analysts, multiple cell culture prepara-
tions, and multiple reagent lots into the validation plan.
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Table 2. Example of a Multifactor DOE with 3 Factors

Run Analyst Cell Prep Reagent Lot

NN = ININ ==
NI=IN=IN=N =

(o2 NI (o N (O, Tl PN (VNN 1 O B
NINININ[= |2 |=|—

In this design each analyst performs the bioassay with
both cell preparations and both reagent lots. This is an ex-
ample of a full factorial design because all combinations of
the factors are performed in the validation study. To reduce
the number of runs in the study, fractional factorial designs
may be employed when more than three factors have been
identified. For example, if it is practical for an analyst to
perform four assays in a run, a split-unit design could be
used with analysts as the whole-plot factor and cell prepara-
tion and reagent lot as sub-plot factors. Unlike screening
experiments, the validation design should incorporate as
many factors at as many levels as possible in order to obtain
a representative estimate of IP. More than two levels of a
factor should be employed in the design whenever possible.
This may be accomplished in a less structured manner, with-
out regard to strict factorial layout. Validation runs should
be randomized whenever possible to mitigate the potential
influences of run order or time.

Figure 2 illustrates an example of a validation using nesting
(replicates nested within plate, plate nested within analyst).

Plate 1 Plate 2 1 2
ate [ atle ] [Pla:e ] [Platle ]

[Rep1] [RepZ] [Rep1 ] [Rep21Rep1][Rep2] [Rep1][Rep2]

Figure 2. Example of a nested design using two analysts.

For both of these types of design as well as combinations
of the two, components of variability can be estimated from
the validation results. These components of variability can
be used to identify significant sources of variability as well as
to derive a bioassay format that meets the procedure’s re-
quirements for Erecision. It should be noted that significant
sources of variability may have been identified during bioas-
say development. In this case the validation should confirm
both the impact of these factors and the assay format that
meets the requirement for precision.

Significant Figures—The number of significant figures in a
reported result from a bioassay is related to the latter’s pre-
cision. In general, a bioassay with %GCV between 2% and
20% will support two significant figures. The number of sig-
nificant figures should not be confused with the number of
decimal places—reported values equal to 1.2 and 0.12 have
the same number (two) of significant figures. This standard
of rounding is appropriate for log scaled measurements that
have constant variation on the log scale and proportional
rather than additive variability on the original scale (or the
scale commonly used for interpretation). Note that round-
ing occurs at the end of a series of calculations when the
final measurement is reported and used for decision making
such as conformance to specifications. Thus if the final
measurement is a reportable value from multiple assays,
rounding should not occur prior to determination of the
reportable value. Likewise, specifications should be stated
with the appropriate number of significant figures.
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3. A BIOASSAY VALIDATION EXAMPLE

An example illustrates the principles described in this
chapter. The bioassay will be used to support a specification
range of 0.71 to 1.41 for the product. Using the Cpm de-
scribed in section 2.5 Validation Target Acceptance Criteria, a
table is derived showing the projected rate of OOS results
for various restrictions on RB and IP. Cpm is calculated on
the basis of the variability of a reportable value using three
independent runs of the bioassay (see discussion of format
variability, above). Product variability is assumed to be equal
to 0 in the calculations. The laboratory may wish to include
target product variability. An estimate of target product vari-
ability can be obtained from data from a product, for exam-
ple, manufactured by a similar process.

Table 3. Cpm and Probability of 00S for Various Restrictions

on RB and IP
Prob(00S)
LSL-USL IP (%) RB (%) Cpm (%)
0.71-1.41 20 20 0.54 10.5
0.71-1.41 8 12 0.94 0.48
0.71-1.41 10 5 1.55 0.0003

The calculation is illustrated for IP equal to 8% and rela-
tive bias equal to 12% (n = 3 runs):

Com= In(1 .41)2— In(0.71) :
6-[In(1.08)1 /3 +[In(1.12)]

Prob(00S) = 2 - d(=3 - 0.94) = 0.0048 (0.48%),

where @ represents the standard normal cumulative distri-
bution function.

From Table 3, acceptable performance (less than 1%
chance of obtaining an OOS result due to bias and variabil-
ity of the bioassay) can be expected if the IP is <8% and
relative bias is <12%. The sample size formula given in
section 2.7 Statistical Considerations, Risks in Decision-Making
and Number of Validation Runs can be used to derive the
number of runs required to establish conformance to an ac-
ceptance criterion for relative bias equal to 12% (using
%GCVp = 8%; o = = 0.05):

. (1.89+2.36) -[In(1.08)]

r ~8 runs
[In(1.12)]

Thus eight runs would be needed in order to have a 95%
chance of passing the target acceptance criterion for relative
bias if the true relative bias is zero. Note that the calculation
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of sample size assumes that a singlet of the validation sam-
ples will be performed in each validation run. The use of
muItiBIe replication sets and/or multiple assays will provide
valuable information that allows separate estimates for intra-
run and inter-run variability, and will decrease the risk of
failing to meet the validation target acceptance criteria.

Five levels of the target analyte are studied in the valida-
tion: 0.50, 0.71, 1.00, 1.41, and 2.00. Two runs at each
level are generated by two trained analysts using two media
lots. Other factors may be considered and incorporated into
the design using a fractional factorial layout. The laboratory
should strive to design the validation with as many levels of
each factor as possible in order to best model the long-term
performance of the bioassay. In this examlgle each analyst
performs two runs at each level using each media lot. A run
consists of a full dilution series of the Standard as described
in the bioassay’s operating procedure, together with two
independent dilution series of the Test sample. This yields
duplicate measurements of relative potency in each run; see
Taple 4 for all relative potency observations. Note that the
two potency estimates at each level of potency in a run are
not independent due to common analysts and media lots.

A plot is used to reveal irregularities in the experimental
results. In particular, a properly prepared plot can reveal a
failure in agreement of validation results with validation lev-
els, as well as heterogeneity of variability across levels (see
discussion of the log transformation in section 2.7 Statistical
Considerations). The example plot in Figure 3 includes the
unit line (line with slope equal to 1, passing through the
origin). The analyst 1 and analyst 2 data are deliberately
offset with respect to the expected potency to allow clear
visualization and comparison of the data sets from each
analyst.

A formal anallysis of the validation data might be under-
taken in the following steps: (1) an assessment of variability
(IP) should precede an assessment of relative accuracy or
specificity in order to establish conformance to the assump-
tion that variances across samcfle levels can be pooled; and
(2) relative accuracy is assessed either at separate levels or by
a combined analysis, depending on how well the data
across levels can be pooled. These steps are demonstrated
using the example validation data, along with some details
of the calculations for illustrative purposes. Note that the
calculations illustrated in the following sections are appropri-
ate only with a balanced dataset. Imbalanced designs or
datasets with missing relative potency measurements should
be analyzed using a mixed model analysis with restricted
maximum likelihood estimation (REML).

3.1 Intermediate Precision

Data at each level can be analyzed using variance compo-
nent analysis. With balanced data, as in this example, vari-
ance components can be determined from a standard one-

Table 4. Example of Bioassay Validation with Two Analysts, Two Media Lots,
and Runs per Level for Each Combination of Analyst and Lot

Media
Lot/Analyst 1/1 1/2 2/1 2/2

Run 1 2 1 2 1 2 1 2

0.50 0.5215 0.4532 0.5667 0.5054 0.5222 0.5179 0.5314 0.5112
0.50 0.5026 0.4497 0.5581 0.5350 0.5017 0.5077 0.5411 0.5488
0.71 0.7558 0.6689 0.6843 0.7050 0.6991 0.7463 0.6928 0.7400
0.71 0.7082 0.6182 0.8217 0.7143 0.6421 0.6877 0.7688 0.7399
1.00 1.1052 0.9774 1.1527 0.9901 1.0890 1.0314 1.1459 1.0273
1.00 1.1551 0.8774 1.1074 1.0391 0.9233 1.0318 1.1184 1.0730
1.41 1.5220 1.2811 1.5262 1.4476 1.4199 1.3471 1.4662 1.5035
1.41 1.5164 1.3285 1.5584 1.4184 1.4025 1.4255 1.5495 1.5422
2.00 2.3529 1.8883 2.3501 2.2906 2.2402 2.1364 2.3711 2.0420
2.00 2.2307 1.9813 2.4013 2.1725 2.0966 2.1497 2.1708 2.3126
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Figure 3. A plot of the validation results versus the sample levels.

way ANOVA. An example of the calculation performed at a
single level (0.50) is presented in Table 5.

Table 5. Variance Component Analysis Performed on Log Rela-
tive Potency Measurements at the 0.5 Level

Sum of Mean Expected Mean
Source df Squares Square Square
Var(Error) + 2
Run 7 0.055317 | 0.007902| Var(Run)
Error 8 0.006130 0.000766| Var(Error)
Corrected
total 15 0.061447
Variance Component Estimates
Var(Run) = 0.003568
Var(Error) = 0.000766

The top of the table represents a standard ANOVA analy-
sis. Analyst and media lot have not been included because
of the small number of levels (2 levels) for each factor. The
factor “Run” in this analysis represents the combined runs
across the analyst by media lot combinations. The Expected
Mean Square is the linear combination of variance comﬁo-
nents that generates the measured mean square for eac
source. The variance component estimates are derived by
solving the equation “Expected Mean Square = Mean
Square” for each component. To start, the mean square for
Error estimates Var(Error), the within-run component of vari-
ability, is

Var(Error) = MS(Error) = 0.000766

The between-run component of variability, Var(Run), is sub-
sequently calculated by setting the mean square for Run to

the mathematical expression for the expected mean square,
then solving the equation for Var(Run) as follows:
MS(Run) = Var(Error) + 2 - Var(Run)
Var(Run) = MS(Run) —2MS(Error)
_ 0.007902-0.000766
2

=0.003568

These variance component estimates are combined to estab-
lish the overall IP of the bioassay at 0.50:

IP =100 (" 1)

=100 (e PPEEEDTIE _1)o; _ 6.8%

The same analysis was performed at each level of the vali-
dation, and is presented in Table 6.

A combined analysis can be performed if the variance
components are similar across levels. Typically a heuristic
method is used for this assessment. One might hold the
ratio of the maximum variance to the minimum variance to
no greater than 10 (10 is used because of the limited num-
ber of runs performed in the validation). Here the ratios
associated with the between-run variance component,
0.003639/0.000648 = 5.6, and the within-run component,
0.004303/0.000577 = 7.5, meet the 10-fold criterion. Had
the ratio exceeded 10 and if this was due to excess variabil-
ity in one or the other of the extremes in the levels tested,
that extreme would be eliminated from further analysis and
the range would be limited to exclude that level.

The analysis might proceed using statistical software that
is capable of applying a mixed effects model to the validation
results. That analysis should account for any imbalance in

Table 6. Variance Component Estimates and Overall Variability

for Each Validation Level and the Average

Level
Component 0.50 0.71 1.00 1.41 2.00 Average
Var(Run) 0.003568 0.000648 0.003639 0.003135 0.002623 0.002723
Var(Error) 0.000766 0.004303 0.002954 0.000577 0.002258 0.002172
Overall 6.8% 7.3% 8.5% 6.3% 7.2% 7.2%
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the design, random effects such as analyst and media lot,
and fixed effects such as level (see section 2.7 Statistical
Considerations, Modeling Validation Results Using Mixed Effects
Models). Variance components can be determined for ana-
lyst and media lot separately in order to characterize their
contributions to the overall variability of the bioassay.

In the example, variance components can be averaged
across levels to report the IP of the bioassay. This method of
combining estimates is exact only if a balanced design has
been employed in the validation (i.e., the same replication
strategy at each level). A balanced design was employed for
the example validation, so the IP can be reported as 7.2%
GCV.

Because of the recommendation to report validation re-
sults with some measure of uncertainty, a one-sided 95%
upper confidence bound can be calculated for the IP of the
bioassay. The literature contains methods for calculating
confidence bounds for variance components. The upper
bound on IP for the bioassay example is 11.8% GCV. The
upper confidence bound was not calculated at each level
separately because of the limited data at an individual level
relative to the overall study design.

3.2 Relative Accuracy

The analysis might proceed with an assessment of relative
accuracy at each level. Table 7 shows the average and 90%
confidence interval of validation results in the log scale, as
well as corresponding potency and relative bias.

The analysis has been performed on the average of the
duplicates from each run (n = 8 runs) because duplicate
measurements are correlated within a run by shared IP fac-
tors (analyst, media lot, and run in this case). A plot of
relative bias versus level can be used to examine patterns in
the experimental results and to establish conformance to
the target acceptance criterion for relative bias (12%).

T

-11%

Figure 4. Plot of 90% confidence intervals for relative bias
versus the acceptance criterion. Note lower acceptance cri-
terion is equal to 100 - [(1/1.12) - 1] = -11%.

Figure 4 shows an average positive bias across sample lev-
els ('(iz.e., the average relative bias is positive at all levels). This
consistency is due in part to the lack of independence of
bioassay results across levels. In addition there does not ap-
pear to be a trend in relative bias across levels. The latter
would indicate that a comparison of samples with different
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measured relative Eotency (such as stability samples) is bi-
ased, resulting perhaps in an erroneous conclusion. Trend
analysis can be performed using a regression of log relative
potency versus log level. Introduction during the develop-
ment of the bioassay validation protocol of an acceptance
criterion on a trend in relative accuracy across the range can
be considered.

After establishing that there is no meaningful trend across
levels, the analysis proceeds with an assessment of the rela-
tive accuracy at each level. The bioassay has acceptable rela-
tive bias at levels from 0.50 to 1.41, yielding 90% confi-
dence bounds (equivalent to a two one-sided t-test) that fall
within the acceptance region of —11% to 12% relative bias.
The 90% confidence interval at 2.0 falls outside the accep-
tance region, indicating that the relative bias may excee
12%.

A combined analysis can be Ferformed utilizing statistical
software that is ca?able of applying a mixed effects model to
the validation results. That analysis accurately accounts for
the validation study design. The analysis also accommodates
random effects such as analyst, media lot, and run (see sec-
tion 2.7 Statistical Considerations, Modeling Validation Results
Using Mixed Effects Models).

3.3 Range

The conclusions derived from the assessment of IP and
relative accuracy can be used to establish the bioassay’s
range that demonstrates satisfactory performance. Based on
the acceptance criterion for IP equal to 8% GCV (see Table
6) and for relative bias equal to 12% (see Table 7), the
range of the bioassay is 0.50 to 1.41. In this range, level 1.0
has a slightly higher than acceptable estimate of IP (8.5%
versus the target acceptance criterion <8.0%), which may
be due to the variability of the estimate that results from a
small dataset. Because of this and other results in Table 6,
one may conclude that satisfactory IP was demonstrated
across the range.

3.4 Use of Validation Results for Bioassay
Characterization

When the study has been performed to estimate the char-
acteristics of the bioassay (characterization), the variance
component estimates can also be used to predict the variabil-
ity for different bioassay formats and thereby can determine
a format that has a desired level of precision. The predicted
variability for k independent runs, with n individual dilution
series of the test preparation within a run, is given by the
following formula for format variability:

Format Variability = 100 - (eXVarRunyk = VarErron/mk) ~ — 1)

Using estimates of intra-run and inter-run variance compo-
nents from Table 6 [Var(Run) = 0.002723 and Var(Error) =
0.002172], if the bioassay is performed in three indepen-

Table 7. Average Potency and Relative Bias at Individual Levels

Log Potency Potency Relative Bias
Level na Average (90% ClI) Average (90% CI) Average (90% CI)
0.50 8 -0.6613 (=0.7034, -0.6192) 0.52 (0.49, 0.54) 3.23% (-1.02, 7.67)
0.71 8 -0.3419 (=0.3773, -0.3064) 0.71 (0.69, 0.74) 0.06% (=3.42, 3.67)
1.000 8 0.0485 (0.0006, 0.0964) 1.05 (1.00, 1.10) 4.97% (0.06, 10.12)
1.41 8 0.3723 (0.3331, 0.4115) 1.45 (1.40, 1.51) 2.91% (=1.04, 7.03)
2.00 8 0.7859 (0.7449, 0.8269) 2.19 (2.11, 2.29) 9.72% (5.31, 14.32)

2Analysis performed on averages of duplicates from each run.

bCalculation illustrated in section 2.7 Statistical Considerations, Scale of Analysis.
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dent runs, the predicted variability of the reportable value
(geometric mean of the relative potency results) is equal to:

Format Variability = 100 - (e 000272373+ 000217271-3) — 1) = 4.1%

This calculation can be expanded to include various combi-
nations of runs and minimal sets (assuming that the num-
bers of samples, dilutions, and replicates in the minimal sets
are held constant) within runs as shown in Table 8.

Table 8. Format Variability for Different Combinations of
Number of Runs (k) and Number of
Minimal Sets within Run (n)

Number of Runs (k)
Reps (n) 1 2 3 6
1 7.2% 5.1% 4.1% 2.9%
2 6.4% 4.5% 3.6% 2.6%
3 6.0% 4.2% 3.4% 2.4%
6 5.7% 4.0% 3.3% 2.3%

Clearly the most effective means of reducing the variabil-
ity of the reportable value (the geometric mean potency
across runs and minimal sets) is by independent runs of the
bioassay procedure. In addition, confidence bounds on the
variance components used to derive IP can be utilized to
establish the bioassay’s format variability.

Significant sources of variability must be incorporated into
runs in order to effect variance reduction. A more thorough
analysis of the bioassay validation example would include
analyst and media lot as factors in the statistical model. Vari-
ance component estimates obtained from such an analysis
are presented in Table 9.

Table 9. REML Estimates of Variance Components Associated
with Analyst, Media Lot, and Run

Variance Component Estimate
Var(Media Lot) 0.0000
Var(Analyst) 0.0014
Var(Analyst*Media Lot) 0.0000
Var(Run (Analyst*Media Lot)) 0.0019
Var(Error) 0.0022

Identification of analyst as a significant bioassay factor
should ideally be addressed during bioassay development.
Nonetheless the laboratory may choose to address the ap-
parent contribution of analyst-to-analyst variability through
improved training or by using multiple analysts in format-
ting the assay for routine performance of the bioassay.

Estimates of intra-run and inter-run variability can also be
used to determine the sizes of differences (folcf/dif'ference)
that can be distinguished between samples tested in the
bioassay. For k runs, with n minimal sets within each run,
using an approximate two-sided critical value from the stan-
dard normal distribution with z = 2, the critical fold differ-
ence between reportable values for two samples that are
tested in the same runs of the bioassay is given by:

Critical Fold Difference = e2 - WatRuny/ksVarErron/mk)
When samples have been tested in different runs of the
bioassay (such as long-term stability samples), the critical
fold difference is given by (assuming the same format is
used to test the two series of samples):

Critical Fold Difference = e2-\Z- VaRun)/k+Var(Eron)/(nk)]

For comparison of samples the laboratory can choose a de-
sign (bioassay format) that has suitable precision to detect a
practically meaningful fold difference between samples.
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3.5 Confirmation of Intermediate Precision
and Revalidation

The estimate of IP from the validation is highly uncertain
because of the small number of runs performed. After the
laboratory gains suitable experience with the bioassay, the
estimate can be confirmed or updated by analysis of control
sample measurements such as the variability of a positive
control. This analysis can be done with the control prepared
and tested like a Test sample (i.e., same or similar dilution
series and replication strategy). This assessment should be
made after sufficient assays have been performed to obtain
an alternative estimate of the bioassay’s intermediate preci-
sion, including implementation of changes (e.g., different
analysts, different key reagent lots, and different cell prepa-
rations) associated with the standardized assay protocol. The
reported IP of the bioassay should be modified as an
amendment to the validation report if the assessment
reveals a substantial disparity of results.

The bioassay should be revalidated whenever a substantial
change is made to the method. This includes but is not
limited to a change in technology or a change in readout.
The revalidation may consist of a complete re-enactment of
the bioassay validation or a bridging study that compares
the current and the modified methods.

4. ADDITIONAL SOURCES OF INFORMATION

Additional information and alternative methods can be
found in the references listed below.

1. ASTM. Standard Practice for Using Significant Digits
in Test Data to Determine Conformance with Specifi-
cations, ASTM E29-08. Conshohocken, PA: ASTM;
2008.

2. Berger R, Hsu ]. Bioequivalence trials, intersection-
union tests and equivalence confidence intervals. Stat
Sci 1996;11(4):283-319.

3. Burdick R, Graybill F. Confidence Intervals on Variance
Components. New York: Marcel Dekker; 1992:28-39.

4. Haaland P. Experimental Design in Biotechnology. New
York: Marcel Dekker; 1989;64-66.

5. Schofield TL. Assay validation. In: Chow SC, ed. Ency-
clopedia of Biopharmaceutical Statistics. 2nd ed. New
York: Marcel Dekker; 2003.

6. Schofield TL. Assay development. In: Chow SC, ed.
Encyclopedia of Biopharmaceutical Statistics. 2nd ed.
New York: Marcel Dekker; 2003.

7. Winer B. Statistical Principles in Experimental Design.
2nd ed. New York: McGraw-Hill; 1971:244-251.

APPENDIX—MEASURES OF LOCATION AND
SPREAD FOR LOG NORMALLY DISTRIBUTED
VARIABLES

Two assumptions of common statistical procedures, such
as ANOVA or confidence interval estimation, are (1) the vari-
ation in the bioassay response about its mean is normally
distributed and (2) the standard deviation of the observed
response values is constant over the range of responses that
are of interest. Such responses are said to have a “normal
distribution” and an “additive error structure”. When these
two conditions are not met, it may be useful to consider a
transformation before using common statistical procedures.

The variation in bioassay responses is often found to be
non-normal (skewed toward higher values) with a standard
deviation approximately proportional (or nearly so0) to the
mean response. Such responses often have a “multiplicative
error structure” and follow a “log normal distribution” with
a percent coefficient of variation (%CV) that is constant
across the response range of interest. In such cases, a log
transformation of the bioassay response will be found to be
approximately normal with a nearly constant standard
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deviation over the response range. After log transformation,
then, the two assumptions are met, and common statistical
procedures can be performed on the log transformed re-
sponse. The following discussion presumes a log normal dis-
tribution for the bioassay response.

We refer to an observed bioassay response value, X, as
being on the “original scale of measurement” and to the
log transformed response, Y = log(X), as being on the “log
transformed scale”. Although common statistical procedures
may be appropriate only on the log transformed scale, we
can summarize bioassay response results by estimating
measures of location (e.g., mean or median), measures of
spread (e.g., standard deviation), or confidence intervals on
either scale of measurement, as long as the scale being used
is indicated. The %CV is useful on the original scale where it
is constant over the response range. For the same reason,
the standard deviation (SD) is relevant on the log trans-
formed scale. There may be advantages to reporting statisti-
cal summaries on the basis of the log transformed (Y) scale.
However, it is often informative to back transform the re-
ported measures to the original scale of measurement (X).

For any given value of X, there is only one unique value
of Y = log(X), and vice versa. Similarly for measures of loca-
tion and spread, there is a unique one-to-one correspon-
dence between measures of location and spread obtained
on the original and log transformed scales. Further, just as
there is a simple relationship between X and Y = log(X),
there are relatively simple relationships that allow conversion
between the corresponding measures on each scale, as indi-
cated in Table A-1 below. In the table, “Average” and “SD”,
wherever they appear, refer to measures calculated on the
log transformed (Y) scale.

The geometric mean (GM) should not be misinterpreted
as an estimate of the mean of the original scale (X) variable,
but is instead an estimate of the median of X. The median is
a more appropriate measure of location for variables with
skewed error distributions such as the log normal, as well as
s%mmetric error distributions where the median is equal to
the mean.

Similarly, the geometric standard deviation (GSD) should
not be misinterpreted as the standard deviation of the origi-
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nal scale (X) variable. GSD is, however, a useful multiplica-
tive factor for obtaining confidence intervals on the original
(X) scale that correspond to those on the log transformed
(Y) scale, as shown in the above table. A GSD of 1 corre-
sponds to no variation (SD of Y = 0). The ratio of the Upper
to the Lower confidence bounds, on the untransformed (X)
scale, will be equal to GSD2", as can be seen from Table A-
1

The geometric coefficient of variation (%GCV) approxi-
mates the %CV on the original (X) scale when the %CV is
below 20%. It is important not to confuse these different
measures of spread. The %GCV is a measure relevant to the
log transformed (Y) scale, and the %CV is a measure rele-
vant to the original (X) scale. Depending on the preferred
frame of reference, either or both measures may be useful.

APPENDIX INFORMATION SOURCES

1. Limpert E, Stahel WA, Abbt M. (2001) Log-normal
distributions across the sciences: keys and clues. Bio-
Science 51(5): 341-252.

2. Kirkwood TBL. (1979) Geometric means and meas-
ures of dispersion. Biometrics 35: 908-909.

3. Bohidar NR. (1991) Determination of geometric stan-
dard deviation for dissolution. Drug Development and
Industrial Pharmacy 17(10): 1381-1387.

4. Bohidar NR. (1993) Rebuttal to the “Reply”. Drug De-
velopment and Industrial Pharmacy 19(3): 397-399.

5. Kirkwood TBL. (1993) Geometric standard deviation—
reply to Bohidar. Drug Development and Industrial
Pharmacy 19(3): 395-396.

6. <1010> Analytical data: interpretation and treatment.
USP 34. In: USP34-NF 29. Vol. 1. Rockville (MD):
United States Pharmacopeial Convention; c2011. p.
419.

7. Tan CY. (2005) RSD and other variability measures of
the lognormal distribution. Pharmacopeial Forum
31(2): 653-655.

Table A-1. Comparison of Measures of Location and Spread

Scale of Measurement

Measure

Log Transformed (V)

Original (X)

Geometric mean (GM)

n
Ch Hxi — eAverage
i=1

Location Mean (average)
Geometric standard deviation
Spread Standard deviation (SD) (GSD) = esb
Confidence intervals Lower Average — k - SD/An GM/GSD¥n
(k is an approprie‘lte.con‘stant Upper Average + k - SD/\n GM - GSDkAn
based on the t-d|str|bqt|on. el Width (upper — lower) Ratio(upper/lower)
large sample z approximation) Size =2.k-SDAN — GSD2/h

Percent coefficient of
variation (%CV)

%GCV =100 - (GSD - 1)

%CV =1001/e%™ —1 2 %GCV

WIS (USP35)
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Add the following:

B(1034) ANALYSIS OF
BIOLOGICAL ASSAYS

1. INTRODUCTION

Although advances in chemical characterization have re-
duced the reliance on bioassays for many products, bioas-
says are still essential for the determination of potency and
the assurance of activity of many proteins, vaccines, com-
plex mixtures, and products for cell and gene therapy, as
well as for their role in monitoring the stability of biological
products. The intended scope of general chapter Analysis of
Biological Assays (1034) includes guidance for the analysis
of results both of bioassays described in the United States
Pharmacopeia (USP), and of non-USP bioassays that seek to
conform to the qualities of bioassay analysis recommended
by USP. Note the emphasis on analysis—design and valida-
tion are addressed in complementary chapters (Development
and Design of Bioassays (1032) and Biological Assay Validation
(1033), respectively).

Topics addressed in (1034) include statistical concepts and
methods of analysis for the calculation of potency and confi-
dence intervals for a variety of relative potency bioassays,
includin? those referenced in USP. Chapter (1034) is in-
tended for use primarily by those who do not have exten-
sive training or experience in statistics and by statisticians
who are not experienced in the analysis of bioassays. Sec-
tions that are primarily conceptual require only minimal sta-
tistics background. Most of the chapter and all the methods
sections require that the nonstatistician be comfortable with
statistics at least at the level of USP general chapter Analyti-
cal Data—lInterpretation and Treatment (1010) and with lin-
ear regression. Most of sections 3.4 Nonlinear Models for
Quantitative Response and 3.6 Dichotomous (Quantal) Assays
require more extensive statistics background and thus are
intended primarily for statisticians. In addition, (1034) in-
troduces selected complex methods, the implementation of
which requires the guidance of an experienced statistician.

ApEroaches in (1034) are recommended, recognizing the
possibility that alternative procedures may be employed. Ad-
ditionally, the information in (1034) is presented assuming
that computers and suitable software will be used for data
analysis. This view does not relieve the analyst of responsi-
bility for the consequences of choices pertaining to bioassay
design and analysis.

2. OVERVIEW OF ANALYSIS OF BIOASSAY
DATA

Following is a set of steps that will help guide the analysis
of a bioassay. This section presumes that decisions were
made following a similar set of steps during development,
checked during validation, and then not required routinely.
Those steps and decisions are covered in general informa-
tion chapter Design and Development of Biological Assays
(1032). Section 3 Analysis Models provides details for the
various models considered.

1. As a part of the chosen analysis, select the subset of
data to be used in the determination of the relative
potency using the prespecified scheme. Exclude only
data known to result from technical problems such as
contaminated wells, non-monotonic concentra-
tion—response curves, etc.

2. Fit the statistical model for detection of potential out-
liers, as chosen during development, including any
weighting and transformation. This is done first with-
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out assuming similarity of the Test and Standard
curves but should include important elements of the
design structure, ideally using a model that makes
fewer assumptions about the functional form of the
response than the model used to assess similarity.

3. Determine which potential outliers are to be removed
and fit the model to be used for suitability assess-
ment. Usually, an investigation of outlier cause takes
place before outlier removal. Some assay systems can
make use of a statistical (noninvestigative) outlier re-
moval rule, but removal on this basis should be rare.
One approach to “rare” is to choose the outlier rule
so that the expected number of false positive outlier
identifications is no more than one; e.g., use a 1%
test if the sample size is about 100. If a large number
of outliers are found above that expected from the
rule used, that calls into question the assay.

4. Assess system suitability. System suitability assesses
whether the assay Standard preparation and any con-
trols behaved in a manner consistent with past per-
formance of the assay. If an assay (or a run) fails sys-
tem suitability, the entire assay (or run) is discarded
and no results are reported other than that the assay
(or run) failed. Assessment of system suitability usually
includes adequacy of the fit of the model used to
assess similarity. For linear models, adequacy of the
model may include assessment of the linearity of the
Standard curve. If the suitability criterion for linearity
of the Standard is not met, the exclusion of one or
more extreme concentrations may result in the crite-
rion being met. Examples of other possible system
suitability criteria include background, positive con-
trols, max/min, max/background, slope, 1Cso (or
ECso), and variation around the fitted model.

5. Assess sample suitability for each Test sample. This is
done to confirm that the data for each Test sample
satisfy necessary assumptions. If a Test sample fails
sample suitability, results for that sample are reported
as “Fails Sample Suitability.” Relative potencies for
other Test samples in the assay may still be reported.
Most prominent of sample suitability criteria is similar-
ity, whether parallelism for parallel models or equiva-
lence of intercepts for slope-ratio models. For non-
linear models, similarity assessment involves all curve
parameters other than ECso (or ICso).

6. For those Test samples in the assay that meet the
criterion for similarity to the Standard (i.e., sufficiently
similar concentration-response curves or similar
straight-line subsets of concentrations), calculate rela-
tive potency estimates assuming similarity between
Test and Standard, i.e., by analyzing the Test and
Standard data together using a model constrained to
have exactly parallel lines or curves, or equal
intercepts.

7. A single assay is often not sufficient to achieve a re-
portable value, and potency results from multiple as-
says can be combined into a single potency estimate.
Repeat steps 1-6 multiple times, as specified in the
assay protocol or monograph, before determining a
final estimate of potency and a confidence interval.

8. Construct a variance estimate and a measure of un-
certainty of the potency estimate (e.g., confidence in-
terval). See section 4 Confidence Intervals.

A step not shown concerns replacement of missing data.
Most modern statistical methodology and software do not
require equal numbers at each combination of concentra-
tion and sample. Thus, unless otherwise directed by a spe-
cific monograph, analysts generally do not need to replace
missing values.

3. ANALYSIS MODELS

A number of mathematical functions can be successfully
used to describe a concentration—response relationship. The



